Часть 1 "Дифференциальная геометрия"

Определение 1. Гладкое многообразие \mathcal{M} —это множество точек P, покрытое пересекающимися окрестностями ($\mathit{картамu}$), на каждой из которых можно ввести координаты (однозначные на данной окрестности функции точки $P \in \mathcal{M}$ со значениями в \mathbb{R}^n). Координаты точек, принадлежащих двум пересекающимся окрестностям связаны гладкой заменой: $x_{(1)}^i(P) = f_{(12)}^i(x_{(2)}^j(P))$, при этом $f_{(12)}^i$ называются функциями переклейки.

Пример. Двумерная сфера S^2 —гладкое многообразие. Его можно покрыть двумя окрестностями—покрывающими северное и южное полушария. Отображение каждой окрестности в \mathbb{R}^2 можно задать, например, центральной проекцией из противоположного полюса. Функция переклейки на экваторе дается тождественным отображением.

Задача 1 (1). Покажите, что следующие множества можно рассматривать как гладкие многообразия. Введите карты, найдите функции переклейки:

- 1. Трехмерная сфера S^3 .
- 2. Множество прямых, проходящих через начало координат в \mathbb{R}^3 . Это множество можно также рассматривать как фактор-пространство: $\{\mathbf{x} \in \mathbb{R}^3\}/\mathbf{x} \simeq \lambda \mathbf{x}$, $\lambda \in \mathbb{R} \setminus \{0\}$. Это многообразие называется $\mathbb{R}P^2$.
- 3. Множество комплексных прямых, проходящих через начало координат в \mathbb{C}^2 . Это множество можно также рассматривать как фактор-пространство: $\{\mathbf{x} \in \mathbb{C}^2\}/\mathbf{x} \simeq \lambda \mathbf{x}, \ \lambda \in \mathbb{C}\setminus\{0\}$. Это многообразие называется $\mathbb{C}P^1$ или просто \mathbb{P}^1 .
- 4. Группа $SU(2) = \{U \in \operatorname{Mat}_{2\times 2}(\mathbb{C}) | U^{\dagger}U = 1, \det U = 1\}$. Сравните с многообразием из п. 1.

Задача 2 (2). Понятие карт и функций переклейки встречается также в калибровочных теориях. Пусть на сфере S^2 имеется постоянное магнитное поле, нормальное к ее поверхности, причем полный магнитный поток сквозь сферу равен $\frac{2\pi}{q}$ (q—элементарный заряд). Покажите, что невозможно ввести несингулярный векторный потенциал для такого магнитного поля на всей сфере. Введите ∂ea несингулярный векторных потенциала: $A_{\rm N}$ на северном полушарии и $A_{\rm S}$ на южном (аналоги карт). Покажите, что два потенциала связаны между собой на экваторе калибровочным преобразованием с калибровочной функцией $\alpha(\phi)$ (аналог функции переклейки). Покажите, что $e^{iq\alpha(\phi)}$ (но не сама $\alpha(\phi)$) является однозначной функцией точки на экваторе. Найдите $\alpha(2\pi) - \alpha(0)$.

Задача 3 (1). При каких значениях μ множество точек в \mathbb{R}^2 , удовлетворяющих уравнению $x^2 - y^2 = \mu$, является многообразием?

Определение 2. Вещественным скалярным полем на многообразии называется функция точки многообразия, принимающая значения в \mathbb{R} .

Задача 4 (1). Поскольку на данной карте a координаты $x_{(a)}^i(P)$ однозначно определяют точку P многообразия, то можно считать скалярное поле функцией от координат $\phi_a(x_{(a)}^i)$. Пусть окрестности a и b пересекаются и функция переклейки равна $f_{(ab)}$.

Используя тот факт, что скалярное поле в действительности является функцией $moч\kappa u$ многообразия, определить как связаны функции $\phi_{(a)}(x_{(a)}^i)$ и $\phi_{(b)}(x_{(b)}^i)$.

Определение 3. Векторным полем на многообразии называется зависящий от точки многообразия дифференциальный оператор первого порядка $\mathbf{v}(P) = v^i(x) \frac{\partial}{\partial x^i}. \ v^i(x)$ называются компонентами векторного поля. Множество векторных полей на данном многообразии $\mathcal M$ обозначается $T\mathcal M$. Векторные поля действуют на скалярные поля как дифференциальные операторы.

Задача 5 (1). Пользуясь тем фактом, что выражение для дифференциального оператора ${\bf v}$ справедливо на всех картах многообразия, найдите закон преобразования компонент вектора v^i при переходе с одной карты на другую.

Задача 6 (1). Пусть компоненты вектора v в точке (3,4) в ортогональной системе координат в \mathbb{R}^2 равны (1,2). Найдите его компоненты в полярной системе координат.

Задача 7 (1). Покажите, что коммутатор двух векторных полей является векторным полем. Найдите его компоненты.

Задача 8 (1). Покажите, что множество всех векторов в фиксированной точке P многообразия \mathcal{M} является векторным пространством (касательное пространство к многообразию \mathcal{M} в точке P, обозначается $T_P\mathcal{M}$). Найти размерность этого векторного пространства.

Определение 4. Контравариантным тензором ранга k называют линейную комбинацию тензорных произведений k векторных полей: $\mathbf{v}_{(k)}(P) = v^{i_1 \cdots i_k}(x) \frac{\partial}{\partial x^{i_1}} \otimes \cdots \otimes \frac{\partial}{\partial x^{i_k}}$, причем коэффициенты $v^{i_1 \cdots i_k}$ называются компонентами тензора. Множество контравариантных тензорных полей на многообразии \mathcal{M} обозначается $T^{\otimes k}\mathcal{M}$.

Задача 9 (1). Пользуясь тем фактом, что выражение для тензора $\mathbf{v}_{(k)}$ справедливо на всех картах многообразия, найдите закон преобразования компонент тензора $v^{i_1\cdots i_k}$ при переходе с одной карты на другую.

Задача 10 (1). Пусть V— векторное пространство, F— вещественная линейная функция из V в \mathbb{R} (линейная форма), т.е. $F:V\to\mathbb{R}$. Пусть в V имеется базис \mathbf{e}_i . Компонентами линейной формы F называется набор чисел $\{F(\mathbf{e}_i)\}$. Найти закон преобразования компонент линейной формы. Сравнить с законом преобразования компонент вектора.

Определение 5. Пространство линейных форм на векторном пространстве V называется сопряженным пространстом и обозначается V^* . Сопряженное к касательному пространству $T_P\mathcal{M}$ многообразия \mathcal{M} в точке P называется кокасательным пространством и обозначается $T_P^*\mathcal{M}$. Элементы кокасательного пространства называются ковариантными векторами, ковекторами, или 1-формами. В частности, дифференциал функции $df(P) = \frac{\partial f(x)}{\partial x^i} dx^i$ является ковектором — его значение на векторе $v(P) = v^i(x) \frac{\partial}{\partial x^i}$ равно $(df)(\mathbf{v}) \stackrel{\text{def}}{=} \langle \mathbf{v}, df \rangle = \mathbf{v} f = v^i \frac{\partial f(x)}{\partial x^i}$.

Задача 11 (1). Найти закон преобразования компонент дифференциала $\left\{\frac{\partial f}{\partial x^i}\right\}$ при замене координат. Сравнить с законом преобразования векторного поля.

Определение 6. Тензорным полем типа (n,m) на многообразии¹ называется объект, компоненты которого в координатах имеют вид $T_{j_1\cdots j_m}^{i_1\cdots i_n}(x)$ и при замене координат

 $^{^{1}}$ Всюду многообразия предполагаются достаточно гладкими — функции переклейки дифферецируемы нужное число раз.

преобразуются по закону $T_{\tilde{\jmath}_1\cdots\tilde{\jmath}_m}^{\tilde{\imath}_1\cdots\tilde{\imath}_n}(\tilde{x})=\frac{\partial \tilde{x}^{\tilde{\imath}_1}}{\partial x^{k_1}}\cdots\frac{\partial \tilde{x}^{\tilde{\imath}_n}}{\partial x^{k_n}}\frac{\partial x^{l_1}}{\partial \tilde{x}^{\tilde{\jmath}_1}}\cdots\frac{\partial x^{l_m}}{\partial \tilde{x}^{\tilde{\jmath}_m}}T_{l_1\cdots l_m}^{k_1\cdots k_n}(x)$. Скалярное поле — это тензорное поле типа (0,0), векторное поле — поле типа (1,0), поле 1-форм — поле типа (0,1). Верхние индексы называются контравариантными, нижние - ковариантными. Тензоры типа (n,m) на d-мерном многобразии образуют линейное пространство размерности d^{m+n} .

- Задача 12 (1). а) Покажите, что верхние и нижние индексы тензора можно ceo-paчueamb, и при этом снова получается тензор, например T_i^i тензор типа (0,0).
 - б) Покажите, что тензорное произведение векторов тензор. Найдите его компоненты.
 - в) Покажите, что при перестановке индексов одного типа (например, только верхних), тензор остается тензором. Можно ли переставлять индексы разного типа (верхние и нижние)?
 - г) Покажите, что частная производная тензора, вообще говоря, не есть тензор. То есть если $T^{i_1\cdots i_n}_{j_1\cdots j_m}$ тензор, то $S^{j_1\cdots i_n}_{j_1\cdots j_{m+1}}=\frac{\partial}{\partial x^{j_1}}T^{i_1\cdots i_n}_{j_2\cdots j_{m+1}}$ тензором не является.
- **Задача 13** (1). а) Покажите, что δ^i_j является тензором типа (1, 1), а δ_{ij} не является тензором типа (0, 2)
 - б) Пусть a^{ij} тензор типа (2,0). Показать, что числа b_{ij} , удовлетворяющие условию $a^{ij}b_{jk}=\delta^i_k$, образуют тензор типа (0,2).
 - в) Пусть a_{ij} тензор типа (0,2). Пусть оно невырождено, тогда существует обратная матрица к матрице $A=(a_{ij})$, обозначим её элементы как $a^{ij},\ a_{ik}a^{kj}=\delta^i_j$. Рассмотрим объекты $a_{\alpha i_1}T^{i_1\cdots i_n}_{j_1\cdots j_m}$ и $a^{\alpha j_1}T^{i_1\cdots i_n}_{j_1\cdots j_m}$. Являются ли они тензорами? какого типа?
 - г) Является ли $\epsilon_{i_1\cdots i_n}$ тензором на n-мерном многообразии?
- **Задача 14** (1). а) Доказать, что если тензор T_{ijk} симметричен по первым двум индексам и антисимметричен по второму и третьему, то он равен нулю.
 - б) Доказать, что если a_{ij} симметрический, b^{ij} антисимметрический тензоры, то $a_{ij}b^{ij}=0$.

Определение 7. Будем говорить, что на многообразии задана *метрика*, если любому ненулевому вектору в любой точке многообразия, $\mathbf{v}(P)$, можно сопоставить положительное число $g(P|\mathbf{v}(P),\mathbf{v}(P))$ — квадрат его длины — причем функция $g(P|\mathbf{v},\mathbf{w})$ линейна по \mathbf{v} и \mathbf{w} . Иными словами, на касательном пространстве к каждой точке многообразия задана билинейная симметрическая положительно-определенная форма. Многообразие с метрикой называется *римановым* многообразием.²

Задача 15 (0.5). а) Покажите, что в координатной карте метрику можно записать как $g(P|\mathbf{v}(P),\mathbf{w}(P))=g_{ij}(x)v^i(x)w^j(x)$. Матрица g_{ij} называется матрицей компонент метрики. Найдите закон преобразования компонент метрики при замене координат. Является ли метрика тензором? Покажите, что для каждой

 $^{^2}$ В общей теории относительности используются *псевдо*римановы многообразия. Они отличаются от римановых тем, что квадрат длины вектора может быть как положительным так и отрицательным.

точки многообразия всегда существует такой выбор координат, что матрица компонент метрики — единичная.

б) Если в некоторых координатах матрица компонент единичная в *каждой* точке многообразия, то метрика называется *плоской*. Такие координаты называют плоскими. Многообразие, на котором можно ввести плоскую метрику также называется плоским. Покажите, что \mathbb{R}^n , окружность S^1 и тор $S^1 \times S^1$ являются плоскими.

Задача 16 (0.5). Пусть сфера задана уравнением $x^2 + y^2 + z^2 = R^2$ в \mathbb{R}^3 , причем x, y, z— плоские координаты. Сопоставим вектору \mathbf{v} , касательному к сфере, квадрат его длины в \mathbb{R}^3 . Найдите компоненты полученной таким образом метрики.

Задача 17 (1). а) Покажите, что индексы тензора можно *поднимать* и *опускать* с помощью метрики, например $T_i^i g^{jk}$ — тензор типа (2,0).

б) Покажите, что $g(x)^{\frac{1}{2}}\epsilon_{i_1\cdots i_n}$, где $g=\det g_{ij}$, являются компонентами тензора на n-мерном многообразии.

Определение 8. Определим связность или парамельный перенос вектора $\mathbf{v}(P)$ из точки P на вектор \mathbf{w} как оператор $\Gamma_{\mathbf{w}}$, линейный по \mathbf{w} и дающий вектор $\mathbf{v}_{\text{trans}}(P+\mathbf{w}) = \Gamma_{\mathbf{w}}(P)\mathbf{v}(P)$. Ковариантная производная векторного поля \mathbf{v} определяется как $\nabla_{\mathbf{w}}\mathbf{v}(P) = \mathbf{v}(P+\mathbf{w}) - \mathbf{v}_{\text{trans}}(P+\mathbf{w})$. Ковариантная производная действует на тензорное произведение векторов по правилу Лейбница: $\nabla_{\mathbf{w}}(\mathbf{v} \otimes \mathbf{u}) = (\nabla_{\mathbf{w}}\mathbf{v}) \otimes \mathbf{u} + \mathbf{v} \otimes (\nabla_{\mathbf{w}}\mathbf{u})$. Будем считать, что скалярное поле парамлельно переносится без изменений, $\phi_{\text{trans}}(P+\mathbf{w}) = \phi(P)$

Задача 18 (1). Как записываются компоненты связности в координатах? Найдите закон преобразования компонент связности при замене координат, считая, что взятие ковариантной производной — тензорная операция.

Задача 19 (1). Пусть многообразие $\mathcal{M} = \mathbb{R}^n$. Докажите, что ковариантная производная является тензорной операцией. Являются ли тензором компоненты связности?

Определение 9. Связность Γ называется согласованной с метрикой, если $\nabla_i g_{jk} = 0$. Кручением связности Γ называется тензор $C^i_{jk} = \Gamma^i_{jk} - \Gamma^i_{kj}$. Мы будем рассматривать только связности без кручения, согласованные с метрикой. Такие связности называются римановыми связностями.

Задача 20 (0.5). Показите, что если в некоторых координатах компоненты связности равны нулю всюду на многообразии, то метрика плоская.

Задача 21 (1). Найдите выражение для компонент связности через компоненты метрики. Покажите, что

a)
$$\Gamma^i_{ji} = \partial_i \ln \sqrt{g}$$
,

б)
$$\nabla_i v^i = \frac{1}{\sqrt{g}} \partial_i (\sqrt{g} v^i),$$

в)
$$\nabla_i \nabla^i \phi = \nabla_i g^{ij} \nabla_j \phi = g^{ij} \nabla_i \nabla_j \phi = \frac{1}{\sqrt{g}} \partial_i \sqrt{g} g^{ij} \partial_j \phi.$$

Задача 22 (1). Найдите компоненты ковариантной производной от скалярного поля, векторного поля. Покажите, что $\nabla_i \alpha_j - \nabla_j \alpha_i = \partial_i \alpha_j - \partial_j \alpha_i$, и вообще $\nabla_{[i} \omega_{jk\cdots]} = \partial_{[i} \omega_{jk\cdots]}$, где скобки обознаяают антисимметризацию.

Задача 23 (1). Покажите, что $[\nabla_j, \nabla_k] v^i = R^i_{jkl} v^l$, причем R^i_{jkl} является тензором. Выразите компоненты этого тензора через компоненты связности.

Определение 10. R^i_{ikl} называется тензором *кривизны*, или тензором Римана.

Задача 24 (2). Покажите, что если $R^i_{jkl} = 0$ всюду на многообразии, то можно выбрать координаты так, что связность также равна нулю. Обратно, покажите, что если хотя бы где-то $R^i_{jkl} \neq 0$, то связность не может быть нулевой всюду.

Задача 25 (2). Покажите, что тензор $R_{ijkl} = g_{im}R^m_{jkl}$ имеет следующие симметрии:

- a) $R_{ijkl} = -R_{ijlk} = -R_{jikl}$,
- $6) R_{ijkl} = R_{klij},$
- в) $R_{ijkl} + R_{jkil} + R_{kijl} = 0$. Указание: используйте тождество Якоби [[A, B], C] + [[B, C], A] + [[C, A], B] = 0, верное для любых операторов A, B, C.
- $\Gamma) \nabla_i R_{ikl}^m + \nabla_j R_{kil}^m + \nabla_k R_{ijl}^m = 0.$

Задача 26 (2). Рассмотрим действие для частицы в гравитационном поле, заданном метрикой $g_{\mu\nu}$:

$$S = -\int \left(e^{-1}(\tau) g_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau} + me(\tau) \right) d\tau \tag{1}$$

- а) Найдите уравнения движения для полей $x^{\mu}(\tau)$ и $e(\tau)$.
- б) Покажите, что действие инвариантно относительно замены координат $x^{\mu} \mapsto \tilde{x}^{\mu}(x)$.
- в) Покажите, что действие инвариантно отнсительно репараметризации мировой линии частицы:

$$\tau \mapsto \tilde{\tau}(\tau),$$
 (2)

$$e(\tau) \mapsto \frac{d\tau}{d\tilde{\tau}} e(\tilde{\tau}).$$
 (3)

Выберите $\tilde{\tau}$ так, чтобы $g_{\mu\nu}\frac{dx^{\mu}}{d\tilde{\tau}}\frac{dx^{\nu}}{d\tilde{\tau}}=1$, и запишите уравнения движения в этой параметризации.

г) Пусть компоненты $\Gamma^i_{00} = \partial_i \Phi$ малы, а остальные компоненты $\Gamma^\mu_{\nu\lambda}$ равны нулю. Запишите уравнения движения в этом пределе. Сравните со вторым законом Ньютона. Каков физический смысл поля $\Phi(x)$?

Часть 2 "Введение в топологию"

1. Гомотопические группы.

Определение 11. Два отображения³ топологических пространств $f, g: \mathcal{M} \to \mathcal{N}$ называются гомотопными (будем писать $f \simeq g$), если существует отображение $F: \mathcal{M} \times I \to \mathcal{N}$, такое что $F|_{t=0} = f$, $F|_{t=1} = g$.

Определение 12. Два топологических пространства \mathcal{M} и \mathcal{N} называются гомотопными (будем писать $\mathcal{M} \simeq \mathcal{N}$), если существуют отображения $f \colon \mathcal{M} \to \mathcal{N}$ и $g \colon \mathcal{N} \to \mathcal{M}$, такие что $g \circ f \simeq \mathrm{id}_{\mathcal{M}}$ и $f \circ g \simeq \mathrm{id}_{\mathcal{N}}$.

Задача 27 (0.5). Покажите, что кольцо, а также плоскость с выколотой точкой $\mathbb{R}^2 \setminus \{0\}$ гомотопны окружности. Покажите, что шар, а также плоскость \mathbb{R}^2 , гомотопны точке. Какие из букв латинского алфавита гомотопны друг другу?

Определение 13. Множество гомотопических классов отображений $f: I \to \mathcal{M}$, таких что $f(0) = f(1) = P \in \mathcal{M}$ называется фундаментальной группой пространства \mathcal{M} и обозначается $\pi_1(\mathcal{M}, P)$. Отображения в ней можно перемножать следующим образом

$$(f * g)(t) = \begin{cases} f(2t), & 0 \le t < \frac{1}{2}, \\ g(2t - 1), & \frac{1}{2} \le t < 1. \end{cases}$$

Задача 28 (1). Покажите, что умножение корректно определено на классах. Покажите, что для связного пространства фундаментальная группа в действительности не зависит от точки P (поэтому мы будем писать просто $\pi_1(\mathcal{M})$). Какой класс соответствует единице e в группе? Чему равен обратный элемент к классу отображения f?

Задача 29 (1). а) Как повесить картину (на замкнутой веревке) на два гвоздя так, чтобы она упала, если убрать любой из гвоздей⁴?

- б) То же для большего числа гвоздей.
- в) Приведите пример пространства, в котором фундаментальная группа некоммутативна, т. е. $a*b \neq b*a$.

Задача 30 (0.5). Найдите $\pi_1(S^1)$, $\pi_1(S^1 \times S^1)$.

Задача 31 (1). Покажите, что $\mathbb{R}P^2 = S^2/\mathbb{Z}_2$. Является ли $\mathbb{R}P^2$ ориентируемым? Вычислите $\pi_1(\mathbb{R}P_2)$.

Задача 32 (2). Найдите группу π_1 для замкнутой ориентируемой двумерной поверхности с тремя ручками (кренделя).

Определение 14. Множество гомотопических классов отображений гиперкуба $f \colon I^k \to \mathcal{M}$, таких что $f|_{\partial I^k} = P$ называется k-мерной гомотопической группой пространства \mathcal{M} и обозначается $\pi_k(\mathcal{M}, P)$. Умножение отображений определяется

³Всюду, если не оговорено обратное, все отображения считаются непрерывными.

⁴Веревку можно использовать сколь угодно длинную.

следующим образом:

$$(f * g)(t_1, \dots, t_k) = \begin{cases} f(2t_1, t_2, \dots, t_k), & 0 \le t_1 < \frac{1}{2}, \\ g(2t_1 - 1, t_2, \dots, t_k), & \frac{1}{2} \le t_1 < 1. \end{cases}$$

Задача 33 (1). Покажите, что умножение корректно определено на классах. Покажите, что для связного пространства k-мерная гомотопическая группа в действительности не зависит от точки P (поэтому мы будем писать просто $\pi_k(\mathcal{M})$). Какой класс соответствует единице e в группе? Чему равен обратный элемент к классу отображения f? Покажите, что при k > 1 группы $\pi_k(\mathcal{M})$ коммутативны.

Задача 34 (1). Покажите, что $\pi_k(S^n) = 0$ при k < n. Покажите, что $\pi_n(S^n) = \mathbb{Z}$.

2. Фактор-пространства

Определение 15. Пусть группа G действует на пространстве \mathcal{X} без фиксированных точек. Φ актор-пространством \mathcal{X}/G называется пространство орбит действия группы G, т. е. пространство классов $[P] = \{gP | g \in G\}$.

Задача 35 (1). Пространство $\mathbb{R}P^n$ определяется как множество прямых, проходящих через начало координат в (n+1)-мерном пространстве \mathbb{R}^{n+1} . Покажите, явно что $\mathbb{R}P^1 = S^1$. Покажите также, что $\mathbb{R}P^1 = S^1/\mathbb{Z}_2$, где \mathbb{Z}_2 действует отражением относительно центра окружности. Покажите, что $\mathbb{R}P^n = S^n/\mathbb{Z}_2$.

Задача 36 (1). Пространство $\mathbb{C}P^n$ определяется как множество *комплексных* прямых, проходящих через начало координат в (n+1)-мерном *комплексном* пространстве \mathbb{C}^{n+1} . Покажите, явно что $\mathbb{C}P^1 = S^2$. Покажите также, что $\mathbb{C}P^1 = S^3/U(1)$ и вообще $\mathbb{C}P^n = S^{2n+1}/U(1)$.

Задача 37 (0.5). Найдите $\pi_{1,2,3}(SU(2))$.

Задача 38 (1). Покажите явно, что $SO(3) = SU(2)/\mathbb{Z}_2$. Найдите $\pi_{1,2,3}(SO(3))$. Указание: воспользуйтесь соответствием между точками сферы $S^2 = \{(x^1, x^2, x^3) | x^k x^k = 1\}$ и антиэрмитовыми бесследовыми матрицами 2×2 с единичным детерминантом $M = ix^k \sigma^k$.

Задача 39 (2). Покажите явно, что $SO(4) = SU(2) \times SU(2) / \mathbb{Z}_2$. Найдите $\pi_{1,2,3}(SO(4))$. Указание: воспользуйтесь результатом задачи 37.

Задача 40 (3). Покажите явно, что $SO(6) = SU(4)/\mathbb{Z}_2$. Найдите $\pi_1(SO(6))$. Указание: воспользуйтесь соответствием между точками сферы S^5 и антисимметричными самодуальными комплексными 4×4 матрицами $\{A_{ij}|A_{ij}=-A_{ji},A_{ij}=\epsilon_{ijkl}A_{kl}^*,A_{ij}^*A_{ij}=1\}$.

Задача 41 (1). Покажите, что $SO(n)/SO(n-1) = S^{n-1}$.

Задача 42 (1). Покажите, что $SU(n)/SU(n-1) = S^{2n-1}$.

Задача 43 (1). Покажите, что $Sp(n)/Sp(n-1) = S^{4n-1}$.

3. Расслоения. Длинная точная последовательность гомотопических групп. Стабилизация.

Определение 16. Расслоением называется набор (E, B, p), состоящий из пространства E (том ального пространство расслоения), пространства B (базы расслоения)

и отображения $p: E \to B$ (проекции), такого что прообразы точек базы $F = p^{-1}(x)$ (слои) одинаковы для любого $x \in B$. ($B \times F, B, \mathrm{id} \times 0$) называется тривиальным расслоением. Над каждой картой базы любое расслоение является тривиальным, однако, вообще говоря, имеются функции переклейки слоев на пересечении карт. Сечением расслоения называется непрерывный выбор точки в каждом из слоев. Если слой расслоения является векторным пространством, то расслоение называется векторным; если слой является группой G, то расслоение называется главным G-расслоением.

Задача 44 (0.5). Ленту Мебиуса можно рассматривать как расслоение с базой S^1 и слоем I. Найдите функции переклейки. Покажите, что это расслоение нетривиально.

Рассмотрим границу ленты Мебиуса. Ее можно рассматривать как расслоение с базой S^1 и слоем, состоящим из двух точек. Найдите функции переклейки. Покажите, что расслоение нетривиально. Имеется ли у него хотя бы одно сечение?

Задача 45 (1). Покажите, что расслоение единичных касательных векторов к сфере S^2 не является тривиальным. Указание: от противного. Эквивалентно ли тотальное пространство этого расслоения сфере S^3 ?

Задача 46 (2). Рассмотрим расслоение $\mathcal{O}_{\mathbb{P}^1}(k)$ с тотальным пространством $E=(\mathbb{C}^3\backslash\{0\})/(z_1,z_2,z_3)\sim (\lambda z_1,\lambda z_2,\lambda^k z_3), \lambda\in\mathbb{C}^*$, базой $B=\mathbb{C}P^1$ и проекцией $p(z_1,z_2,z_3)=[(z_1,z_2)].$

- а) Найдите функции переклейки.
- б) Покажите, что при обходе вокруг экватора $S^1 \subset \mathbb{C}P^1$ слой поворачивается на $2\pi k$.
- в) Покажите, что $\mathcal{O}_{\mathbb{P}^1}(k)$ не имеет ненулевых голоморфных сечений при k < 0. Найдите размерность пространства голоморфных сечений при $k \geq 0$. Указание: воспользуйтесь функциями переклейки.
- г) Покажите, что расслоение $\mathcal{O}_{\mathbb{P}^1}(k)$ нетривиально при $k \neq 0$. Указание: воспользуйтесь тем фактом, что единственная голоморфная функция на $\mathbb{C}P^1$ константа.

Определение 17. Последовательность отображений⁵

$$\cdots \rightarrow C_1 \xrightarrow{f_1} C_2 \xrightarrow{f_2} C_3 \xrightarrow{f_3} C_4 \rightarrow \cdots$$

называется точной если im $f_k = \ker f_{k+1}$ для любого k.

Задача 47 (0.5). Покажите, что если последовательность $0 \to A \xrightarrow{f} B \to 0$ точная, что f — изоморфизм.

Задача 48 (0.5). Покажите, что если A, B, C— векторные пространства, и последовательность $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ точная, то $B = B_1 \oplus B_2$, причем $f \colon A \to B_1$ и $g \colon B_2 \to C$ — изоморфизмы.

Убедитесь, что для точной последовательности $0 \to \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \xrightarrow{\text{mod } 2} \mathbb{Z}_2 \to 0$ это неверно.

⁵Более точно, гомоморфизмов групп C_n .

Теорема 1. Если (E, B, p) — расслоение, то существует точная последовательность гомотопических групп:

$$\cdots \to \pi_k(F) \to \pi_k(E) \xrightarrow{p_*} \pi_k(B) \xrightarrow{h} \pi_{k-1}(F) \to \pi_{k-1}(E) \xrightarrow{p_*} \pi_{k-1}(B) \to \cdots$$

Задача 49 (2). Используя длинную точную последовательность гомотопических групп, покажите, что если G—конечная группа, то $\pi_k(X/G) = \pi_k(X)$ при $k \geq 2$. Покажите также, что если $\pi_1(X) = 0$, то $\pi_1(X/G) = G$.

Задача 50 (1). Используя длинную точную последовательность гомотопических групп и результаты задач 41, 42 и 43, покажите, что

- 1. $\pi_k(SO(n)) = \pi_k(SO(n-1))$ при n > k+2,
- 2. $\pi_k(SU(n)) = \pi_k(SU(n-1))$ при n > k/2+1,
- 3. $\pi_k(Sp(n)) = \pi_k(Sp(n-1))$ при n > k/4 + 1/2,

Найдите $\pi_{1,2,3}(SO(n))$, $\pi_{1,2,3}(SU(n))$ и $\pi_{1,2,3}(Sp(n))$ для произвольных n.

Задача 51 (2). Используя длинную точную последовательность гомотопических групп и результат задачи 45, покажите, что $\pi_k(S^3) = \pi_k(S^2)$ для всех $k \geq 3$. Вычислите $\pi_3(S^2)$. Приведите пример нетривиального элемента из $\pi_3(S^2)$.

Задача 52 (1). Используя длинную точную последовательность гомотопических групп, покажите, что если $\pi_1(X) = \pi_2(X) = 0$, то $\pi_2(X/H) = \pi_1(H)$.